Quiz 5

Question 1. (10 pts)
Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
F(x, y)=(-3 x+4 y, 4 x+3 y)
$$

Find the matrix representation of F with respect to the basis $S=\left\{u_{1}, u_{2}\right\}=\{(1,2),(-2,1)\}$.

Solution: with respect to the basis $S=\left\{u_{1}, u_{2}\right\}=\{(1,2),(-2,1)\}$, we have

$$
\begin{gathered}
{\left[F\left(u_{1}\right)\right]_{S}=\left[\begin{array}{l}
5 \\
0
\end{array}\right]} \\
{\left[F\left(u_{2}\right)\right]_{S}=\left[\begin{array}{c}
0 \\
-5
\end{array}\right]}
\end{gathered}
$$

So $[F]_{S}=\left[\begin{array}{cc}5 & 0 \\ 0 & -5\end{array}\right]$

Question 2. (10 pts)

Consider the vector space $\mathbb{P}_{2}(t)$. Choose a basis $S=\left\{1, t, t^{2}\right\}$. Let T be the linear transformation defined by

$$
T(f)=f^{\prime \prime}+4 f^{\prime}
$$

Find the matrix representation of T relative to the basis S.

Solution:

$$
\begin{aligned}
& {[T(1)]_{S}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {[T(t)]_{S}=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]} \\
& {\left[T\left(t^{2}\right)\right]_{S}=\left[\begin{array}{l}
2 \\
8 \\
0
\end{array}\right]}
\end{aligned}
$$

So

$$
[T]_{S}=\left[\begin{array}{lll}
0 & 4 & 2 \\
0 & 0 & 8 \\
0 & 0 & 0
\end{array}\right]
$$

